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ABSTRACT 

The effects of high pressure on a quantum system may be 

described by introducing an external wall potential which 

represents the interaction with neighbouring atoms and molecules. 

Here we present a generalisation of the Hull and Julius3 boundary 

perturbation method of solving the Schrodinger equation f o r  an 

enclosed system. For the one-dimensional case our method gives 

the exact solution. The method may be also applied to any 

separable multidimensional Schrodinger equation. Applications to 

the simple systems: Hz'. and He, are discussed. 

INTRODUCTION -- 
I t  is well known that the standard methods of tliaoretii:d! 

quantum chemistry describe the states of at.onis and molacules a t  

zero pressure. There is experimental evidence that the properties 

of at<lmS and molecules at high pressure are very different from 

those at zero pressure. Therefore, t o  rode1 the reactions 
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occurring in detonations, where the pressure can easily exceed 100 

kbar. it is necessary to include the effect of pressure in the 

quan turn calculations. 

From the microscopic point of view pressure appears as a 

result of the mutual interactions of atoms i n  the system and all 

that is necessary t o  model the effect of pressure on a single 

molecule is to take these interactions into account. In some 

speciaI cases, as for example in crystaline solids, the high 

symmetry simplifies the problem and makes the calculations 

possible. But during detonations the interactions of a given 

molecule with its neighbours seems to be random. Of course it is 

possible, at least in principle to perform quantum all-electron 

computations for a molecule and a chosen configuration of its 

neighbours, but the information we obtain will be very limited 

because the result will be strongly dependent on the configuration 

chosen. 

Therefore it seems worthwile to study simple models describing 

the influence of pressure on quantum systems. For example, we can 

consider a model of a system in a box: within this box the 

hamiltonian is the same as for zero pressure, outside it a model 

potential approximates all the interaction with neighbouring 

atoms. This idea recalls the methods of solid state physics. 

where the properties of a crystal car1 be studied by considering a 

single units cell. The simplest choice for the model potential is 

a potential wall. The idea of simulating the effect of pressure 

on an atom by enclosing it in a spherical box and replacing the 
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interaction with neighbouring particles by a wall 

first introduced by Michels. De Boor and B i j l  i n  

the papers published since this pioneering work3- 

potential was 

9372. Most of 

have been 

concerned with the infinite potential wall because this model 

leads to the "nice" mathematical condition that the wave function 

vanishes at the boundary of the box. The wave function of a 

system enclosed in a box with infinite walls is localized within 

the box and it corresponds well to a general sense that a system 

under pressure is more concentrated than when the pressure is 

zero. 

and for the hydrogen molecule7 and hydrogen molecular 

ion7*10*12*13. 

iaportant that the change of total electronic kinetic energy of a 

gas caused by pressure can be obtained from the equation of 

statel. 

a function of pressure predicted by the infinite potential wall 

Calculations have been performed for a few light at or^^*^ 

For testing the accuracy of box models it Is 

The qualitative behaviour of electronic kinetic energy as 

the quantitative 

overestimates by a few 

easily understood as 

the rapid increase of the curvature of the wave function is a 

consequence of two assumptions: normalization within the box and 

the boundary condition which sets the wave function to zero at the 

boundary. 

The infinite wall poteritlal nodel i;i its original version 

cannot be improved as the only parameter involved is the radius of 

the box which determines the pressure iind there are no farther 

model is in agreement with observation but 

comparison fails because the hard box mode 

tines the effect of pressure. This can be 
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adjustable parameters. However Michels's idea can be simply 

generalized if we coiisider the box with a finite potential wall Uo 

instead of an infinite one (such an idea was suggested by many 

authors. see reference 7 for examplc). This approach seems to be 

more realistic because the potential of the interaction of an 

electron with the neighbouring atonis is far from being infinite 

and the wave function aust extend over neighbouring atoms. 

From the mathematical point of view, the infinite potential 

corresponds to the Dirichlet boundary conditions, whereas i f  the 

potential wall is finite the Neumann boundary conditions are 

satisfied. Unfortunately the direct solution of the Schrodinger 

equation for an external wall potential is usually more difficult 

than for the free unenclosed system. Here we present a method 

which simplifies this problem and. for one dimensional systems. 

gives the exact energy and wave unction. We also discuss the 

applications of our method for s i i l  delling simple chemical systems 

under high pressure. 

THE BOUNDARY PERTURBATION THEORY 

The boundary perturbation theory can be regarded as a "lazy 

man's approach" to the problem of solving the Schrodinger equation 

with additional boundary conditions. It is based on the 

assiinipI.ion that the kiiowIc!d~e o f  the energy Eo and the wave 

function mo of the unenclosrcl syatc:ia provide IIS witli the 

information which allows ont: to  calculate the energy of the 

enclosed system with arbitrary bo indary conditions without solving 

the Schrodinger equation. The first s t e p  in this direction was 
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taken by Hull and Julius1. who proposed tlit! following expression 

to calculate the difference of energy AE betwcen enclosed (hard 

box) and unenclosed system described by a simple one-dimensional 

Schrodinger equation, 

f? 

AE = (2 I mo-2(x)dx)-1 
C 

where R denotes the position o f  the boundary. 

Formula (1 )  is asymptotic and Hull and Julius do not specify 

the lower limit c of the integral. It has been used to study the 

effect of pressure on the hydrogen atom1 and on the H2+ ion12. 

The qualitative behaviour of energy as a function of pressure is 

represented correctly, but comparison of the results given by the 

Hull and Julius method with the exact solution of the Schrodinger 

equation or with more accurate variational calculations shows that 

formula (1) becomes very inaccurate at high pressures. 

Let us consider the system, which at zero pressure is 

described by the Schrodinger equation 

where V denotes the full potc!ntIal. Acxordjng to our model of 

pressure the potential inside the  box reluains the same on 

enclosing system. Therr!forc! 1 h e  Schrodj ricer equation inside the 

box 0 is 
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Another Schrodjnger equation of the form (3). which contains the 

nodel potential describes the wave fuiictioii of enclosed system Q 

outside the box. Now let us assume that there exists a 

nonsingular function f which relates o and oO,  namely: 

o(x) = f(x)oo(x) x € 8. (4) 

This assumption is very strong14, however for a small system we 

will discuss later if i t  does not lead to any limitations of the 

method. It is easy to notice that when we multiply equations ( 2 )  

and (3) by o and mo respectively and the subtract one from the 

other we get the following equation 

where the boundary condltions for function f are connected with 

the potential outside the box. Equation ( 5 )  is equivalent to (3) 

when condition ( 4 ) '  is satisfied, but does not involve the 

potential V because the function eo contains all the necessary 

information about it. This makes equation ( 5 )  a good startine 

point for a boundary perturbation method. Unfortunately w e  do not 

know any general ncthod of solving the multidjacmiionnI eyuations 

of the form ( 5 )  with arbitrary boundary condltions. In the 

following we present a method which works in the one-dinenslonal 

case for both the Dirichlet and Neumann boundary conditions and 
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discuss Its applicatlons for modeling the effect of pressure. 

Let us consider a general one-dinenslonal Schrodinger equation 

of the form 

[V(X) - G(x)H(Eo) - A(Eo)] *,(XI = 0 X a R 

The functions h(x). g(x). G(x), H(Eo) and A(Eo) are introduced in 

order to make the method more general; they can appear when 

equation (6) is obtained as a result of separation of the 

variables of a multidirensional Schrodinger equation. Now the 

equation corresponding to (5) reads 

Let us assume that there exists ~0 e Q such that e ( % ) e O 2 ( ~ )  

fl(%) - 0 (this assumption is only technical and it simplifies 
the final result, however it is satisfied for all they syters 

discussed later). The differential equation (7) can be easily 

transformed to the following integral form 
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When we consider R as a boundary of the system. where the function 

e satisfies the condition 

(for the infinite wall potential Y = 0 )  then equation ( 8 )  can be 

rewritten in the form 

XO 

T h e  integral equation ( 

R 1 dseo-2 

max( x, t) 

0) can be e a s i l y  transformed 

equation when the outer integral is approximated by il finite sum 

( f o r  example by using Gaussian quadrature). Its solutions form a 

one-dimensional vector space and therefore E cart be found as a 
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zero of the main deteruinant of this equation. Equation (10) uay 

be also used as a basis for an iterative The ground 

state of an enclosed system may be approached if we assume that in 

the first approximation f(O) 1 and then continue using (10). TO 

ensure the convergence to a specific element of the vector space 

of solutions of (10) another arbitrary condition for the function 

f is necessary (for example in the foru f ( ~ )  = 1). It is worth 

noticingll that in the first approxiration for the simplest case 

(gmhml. A(E)=E. GmO) the difference in energy between the 

unenclosed system and the syster enclosed in hard box ( Y  = 0 )  is 

given by the Hull and Julius formula (1). 

APPLICATION OF THE BOUNDARY PERTURBATION METHOD 
FOR SIUPLE SYSTEMS UNDER PRESSURE 

Let us consider the hydrogen atom enclosed in a sphere of 

radius R. 

uniforu and is equal to Uo. 

ground state of this enclosed system reads 

Let us assume that the potential outside this sphere is 

The Schrodinger equation for the 

1 I d  d 

2 r2 dr dr 
(r2 - 4) - _ - - -  

where ~ ~ ~ , ~ l  is the cliariicteristic function of the interval 

[O.Rj. The general equation (6) rcdiices to (11) when 

h(r)=g(r)=r2, (3 E 0 .  A(E)=E and x,-0. 

outside the box is well knownl'l and can be written 

Thc solution of (11) 
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e(r) = c e x p ( - G  ( r - ~ ) ) ,  r 3 ~.c=const. 

It leads to the boundary condition in the form (9) where 

1 
7 '  

R-l + / 2 ( U o - E )  

When we take the wave function of the ground state of a free 

hydrogen atom as oo equation (10) can be easily solved 

numerically. The results for the energy of the enclosed hydrogen 

atom are presented in table 1. We compared our calculations with 

the exact solution of equation 

sane energy. 

and both methods give the 

TABLE 3 

The energy (Rydberg units) of the ground state of the hydrogen atom 
enclosed in a spherical box of radius R (bohrs). 
wall, EBPT = energy obtianed from equation (10). E = exact result8 

U, = potential 

R 

4.08671 
3.04187 
2.00000 
1.71208 
3.57457 
2.46766 
1.7221 
1.2513 

UO 

0 

m 

m 

0 

1. 
1. 
1. 
1. 

E BPT 

- .9707 
- .85734 
- .2500 
.2500 

- .9803 
- .8900 
- . M O O  
- .2066 

E 

- .9707 
- .8573 
- .2500 
-2500 

- .9803 
- .8900 
- .6400 
- .2066 

The same method as presented above for the hydrogen atom can 

be applied to helium. Within the self-consistent field rethod the 

ground state of the helium atom is dt?scribed by a one-dimcnsioiial 

Schrodinger equation. When we neglect electron-electron 

corrclatlons the wave function of the helium atoa in its gruund 
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state is 

The Hartree-Fock equation for the orbital function e of the helium 

atom enclosed in a sphere of radius R reads 

where 

and e is the orbital energy. The boundary perturbation method 

cannot be directly applied to solve equation (15) because the 

electron-electron repulsion in the potential U(r) depends on the 

radius of the box as i t  idvolves the orbital function 4. 

Therefore the boundary perturbation method gives the solution 

(~B,oB) not of equation (15) but of the closely related equation 

where q0 is the ground state orbital for the free atom. 

easily shown t h a t  the change  of total energy is 

I t  can b e  
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where the fuiiclional F depends 011 terms of second and higher order 

i n  0 - 0 ~ .  

small. the last term in (17) can be neglected and the boundary 

perturbation method should give an accurate approximation to the 

direct solution of the Hartree-Fock equation (15). The results 

For large R. where the difference between o and e0 is 

are compared with the total energy obtained by a direct solution 

of  equation (15) (see Table 2). The difference between the 

Hartree-Fock energy for helium and that obtained from equation 

(lo) does n o t  exceed 2% for  pressures up t o  1 Mbar. 

TABLE 2 

The change of the total Hartree-Fock energy as a function of the 
box radius R and the wall potential Uo: AESCF - direct solution 
of the Hartree-Fock equation15, CIEBPT - boundary perturbation method 
(all values except pressure in atomic units). 

R 

3.2 
3.2 
3. 
3. 
3 .  
2.8 
2.8 
2. 
2. 
2. 
2. 

" 0  

-.2 
-.l 
-.2 
-.l 
0. 
-.2 
-.l 
-.2 

. o  

.2 

.4 

P/atom 

4.0 103 
7.1 103 

1.4 104 
1.9 104 

2.7 104 

5.3 105 

8.5 lo3 

1.8 lo4 

3.6 lo5 

6.8 lo5 
8.1 lo5 

llESCF 

.000543 

.001164 

.001036 

.001999 

.00285 

.001942 

.003426 

.02140 

.03621 

.04847 

.05888 

A E ~ ~ ~  

,000543 
.001162 
,001036 
.001994 
.00284 
.001936 
.0034 11 
.02060 
.03513 
.04696 
.05687 

The helium atom is the simplest system where we can compare 

the  predictions of the padded box model with the experimental 

rc:sul 1s. Tlic: cliairgr 1 1 1  cJc:ctr~onic k j r i e t i c  energy call be 

r:;iIculatcd from ttie equat io i i  of' state and experirneiital d a t a  are 

; tvni la l , l e  f o r  pressures up t o  25  kliar."'. l t  is well knowri that 

t h e  hard box model m t i r  estimates by ii few times the effect of 
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pressure on the electronic kinetic energy. The padded box model 

allows one to fit the experimental data more closely (see Fig. 1 ) .  

however there 1s no single value of Uo which describes properly 

the behaviour of helium. Higher accuracy may be achieved when we 

consider Uo as a function of the box radius (Fig. 1). 

interesting to notice that for the best fit of the experimental 

data the parameter Y (eq. ( 9 ) )  for the Hartree-Fock orbital 

depends linearly on R (see Fig. 2). This observation may be 

important for the future development of the method if it is 

confirmed for the other systems. 

It is 

The boundary perturbation method can be also applied for the 

hydrogen molecular ion H2+ enclosed in a spheroidal box (to = 

const). The Schrodinger equation for H2+ separates in prolate 

spheroidal coordinates 

l d  d 

2 dC df 
[ -  (€2-1) - - 

and for the ground state it reads 

where R denotes the,distance between hydrogen ions and C is an 

ellipsoidal coordinate defined as a sum of  distances from both 

nuclei divided by R. The functional dependence of the separation 

constant A is given by an infinite series, the coefficients of 

whicli are well It is easy to notice that equation ( 1 8 )  

reduces to  ( 1 0 1  when 1 ~ 1 .  g ( < ) = c 2 - 1 .  1 1 ( K l = K 2 / 8  (2 !+K1) ,  G ( f . ) = t 2 ,  

arid x , = l .  

hydrogen molecular ion we h a w  consitit!red the case of the hard 

ellipsoidal box (f(C,)=O). To test how accurate the boundary 

As the first approach to the problem of- the enclosed 
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perturbation method is we repeated the calculations of Lee Koo and 

Cruz10 for R=2 a . u .  The resirlts are presented in Tahle 3 and an 

TABLE 3 -- 

Electronic energy (Rydberg units) of the ground state of H2+ 
molecular ion inside prolate spheroidal boxes of different 
sizes t o  and eccentricities H = 2 i i . 1 1 .  

method. E = direct calculationslO. 
EBPT = boundary perturbat.jon 

CO 

4.4468 
2.9161 
2.4196 
2.2237 
2.0917 
1.9934 

EBPT 

-2.19998 
-2.05000 
-1.75005 
-1.50007 
-1.24995 
-1 .00008 

E 

-2.2 
-2 .05  
-1.75 
-1.50 
-1.25 
-1.00 

excellent agreement between both methods can be observed. 

Any realistic model of H2+ under pressure should take into 

account the change of the distance between nuclei. We have 

performed the calculations where for constant volume the shape of 

the box is changed to minimize the total energy. The total energy 

as a function of volume is shown in Fig. 3. It may be noticed 

that our 

who mode 

the box. 

that pre 

result is below that obtained by Le Sar and Hershbach' 

led H2+ using a variational form of the wavefunction in 

In our model the distance between nuceli is shorter than 

icted by Le Sar and Hershbach (see Fig. 4 ) .  This is not 

surprising because Le Sar and Hershbach clearly overestimated tho 

distance between nuclei suggestitla t h a t  it is longer than 2 a.u. 

for low pressure. Our work o r 1  the properties of Hz' is still i n  

progress, however it seenis clear t h a t  the boundary perturbat ion 

mt:tliod has proved its siiptrriori  t y  over the variational approach 

f o r  this system. 
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FINAL REMARKS 

In concluding our discussion we emphasize that the boundary 

perturbation method (eq. (10) )  is very general. It may be used to 

calculate the exact energy of a quantum state for any 

one-dimensional problem for both Diriclilet and Neumann boundary 

conditions and therefore it seems to be more appropriate than the 

variational approach where a very high accuracy of energy is 

required. The calculations for helium have shown that, in spite 

of the approximations involved, our  boundary perturbation method 

works well for two-electron system f o r  pressures up to 1 Mbar. 

which covers the range of  pressures of interest for the study of 

chemical processes in detonations. 
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Fig. 1 

The comparison 

electronic kinetic 

the results of the 

rl 

Y z 
between the experimental value of the change in 

energy of helium under pressure (crosses) and 

badded box model (line). Curve ( 1 )  corresponds 

to U, = -.lt3[a.u.]. (2) to Uo = -.16[a.u.]. (3) to U, = 0.14[a.u.) 

and (4) to U o ( R )  = -.15.? 0.1*(3.5-H) [ a . u . ) .  
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F i g .  2 

4 

z Y 

s t a t e  o f  the h e l i u m  atom orlr:losed i n t o  ii pailded box (i iotatioti  as  

t'or Fig.  1 ) .  
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Fig. 3 

The total energy of the hydrogen molecular ion H2+ enclosed in 

a box with unpenetrable walls ( y  = 0 )  as a function of the box 

volumc? (line - boundary perturbation method. crosses - variational 

ca~culationu') . 
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Fig. 4 

The distance between the nuclei in the hydrogen molecular ion 

as a function of pressure (notation as i n  Fig. 3). 
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